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Cool area of research
I I find this area of research quite fascinating and so very much

liked reading through some of Clara’s papers

I Clara is addressing a challenging problem since “one of the
things that we don’t know is how many things we don’t know”

I The number of components in a (finite) mixture model
(FMM) has an interesting history.

g(y ;ψ) =
K∑
j=1

pj fj(y ;θj)

I ψ = (θ1, . . . ,θK , p1, . . . , pK )

I pj > 0 for j = 1, . . . ,K

I
∑

j pj = 1

I fj(·) is any probability distribution
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Brief biased, narrow-viewed, history

I Fit FMM for multiple K , pick K that fits “best”

I Inference/predictions ignore uncertainty from K .

I Put a prior on K .

I challenging RJMCMC (Richardson and Green 1997)

I Fix K to big value and consider K+ < K (Rousseau and
Mengersen 2011)

I Side-step the challenge by setting K =∞ and focus on K+

(BNP mixtures)

I quite compelling as elegant and simple algorithms are available

I Miller and Harrison (2018) build FMM using RPM

I FMM using BNP algorithms (K and K+ unknown)
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Brief bias, narrow-viewed, history

I Argiento and De Iorio (2022) connect K =∞ and K <∞
from BNP perspective

I formally consider induced prior on K+

I Frühwirth-Schnatter and Malsiner-Walli (2019) connect
K =∞ and K <∞ from a FMM perspective

I formally consider induced prior on K+
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Consistency?
I If K =∞, No. (Miller and Harrison 2013)

I But is this a big deal?

I If K fixed and K > K ∗ (K ∗ true value), Yes (Rousseau and
Mengersen 2011)

I Prior on (p1, . . . , pK ) must be adequate

I i.e., Jeffrey’s prior (cool for reasons I’ll mention shortly)

I If K ∼ πK , Yes.

I Clara’s loss based prior (very cool idea assigns “worth” to
mixtures favoring less “complex” mixtures)

I So K ∼ πK seems like the way to go right?

I BUT Cai et al. (2021) (OBayes poster) fj(·) must be correct!

I So, consistency depends on correct definition of cluster ??
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Consistency? What is a cluster?
I Clara spoke on a variety of priors for K and/or p which clearly

influence the prior and posterior of K (and K+)

I Priors for θ (or fj itself) received less attention (not a knock)

I does not directly influence the prior on K (and K+), but does
influence the posterior on K (and K+)

I Personal view: prior on θ (and/or fj) is a formal mechanism
that permits defining a cluster (see Hennig 2015)

I Since cluster definition is so crucial, is prior on θ (and/or fj)
“more” important than that on K and/or p?

I Should we be thinking about the number of clusters only after
we’ve clearly defined a cluster?

I That is, instead of π(θ|K )π(K ), focus on π(K |θ)π(θ)?
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Consistency? What is a cluster?

I Clara’s Jeffrey’s prior idea moves in this direction initial
consideration was prior is jointly on p and θ.

I question: Is it possible to formulate a joint prior like this
outside the Jeffrey prior framework?

I The loss based prior formulation for K is quite clever.

I question: Can the loss function be adjusted to include fj (or
θ)?
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Consistency? Covariate Dependent Partitions

I Clara broaches idea of including additional information
(covariate, time, space) in clustering mechanism.

I The notion of consistency becomes quite muddled for me in
this setting.

I Including covariates in clustering mechanism favors partitions
with clusters that are homogenous in the covariate value a
priori.

I Are we “biasing” things by doing this?

I As more information is included in the clustering mechanism,
the different dimensions of information may be at odds with
each other.

I question: Is there some way to tease this out? E.g., Is space or
time more influential in cluster formation?
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Cluster analysis EDA?

I Cluster definition can change in same application depending
on goals of analysis.

I Even if we are guaranteed to recover K as n ↑, if it is “big”
(e.g., K > 10ish) then my collaborators would ask me if there
is any way to combine them

I They really do like a small number of “interpretable” clusters.
Is this good enough?

I So ...

I question: (more philosophical), it seems that conditions under
which consistency holds are rarely met in real world. So
should model-based clustering be used strictly as an
exploratory data analysis tool to generate hypothesis and
not as a tool to make inferential statements about K?
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